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Abstract. This paper extends previous work on rational agents and
epistemic causation in the situation calculus to devise an explanatory
framework. It incorporates agents’ prioritized goals and intentions, uti-
lizes a black-box goal recognition module, and accommodates causal
analysis of observed effects involving knowledge and intentions, caused by
knowledge-producing and intention-altering actions, respectively. Lever-
aging an action theory and mental state formalization, it then illustrates
–through a theory of mind-grounded model of explanation– that, in con-
trast to purely machine learning-based systems, knowledge representation-
based systems might indeed be more suitable for generating explanations
of observed behaviour.

Keywords: Actual Cause · Causal Knowledge · Intentions · Theory of
Mind · Explainable Agency · Situation Calculus · Logic.

1 Introduction

In recent years, researchers have become increasingly interested in developing
transparent AI systems whose behaviour can be easily understood. To this end,
numerous studies have explored how decisions produced by otherwise opaque
sub-symbolic approaches can be explained. This has also led to a renewed interest
in the study of explainability in knowledge representation (KR), as advocates
of KR argue that its declarative nature makes it cognitively more suited for
explanation purpose.

Over the years, there has been some work on formalizing explanations in
KR [16,12,19,20,14,3]. Motivated by this, in this paper we also investigate the
explanatory potential of KR-based systems, although from an entirely novel
perspective. In particular, we use causal analysis of mental states to sketch one
such system that demonstrates and reinforces that these systems might indeed
be more understandable as they allow for commonsensical and intuitive formal-
ization of explanations.

Our framework is based on the situation calculus (SC) [13,17], a model of
knowledge [15,18] and intentions [6] in the SC, and a formalization of actual cau-
sation [2] and causal knowledge [9] therein. We extend the framework to include
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goal change due to request communication actions and to support causal analy-
sis of conative effects (i.e. effects involving agent motivation). We also utilize a
black-box module for recognizing agents’ intentions. Using these, we propose a
definition of explanation of agent behaviour relative to observed effects, one that
is grounded in theory of mind. Our proposal here is informal, and we mostly fo-
cus on an example to illustrate the idea; a full-fledged formal version is available
in [10].

2. Actions, Mental States, and their Dynamics

Our base framework for this is the Situation Calculus (SC), which is a second-
order (SO) language for modeling and reasoning about dynamic systems where
all changes are result of named actions. Here, a possible state of the domain is
represented by a situation. The initial situation S0 denotes the empty sequence
of actions and do(a, s) denotes the successor situation to s resulting from per-
forming the action a. Thus the domain of situations can be viewed as a tree,
where the root of the tree is the initial situation S0 and the arcs represent ac-
tions. Properties whose truth values vary from situation to situation, are called
fluents. We will use the complex situation term do([α1, · · · , αn], S0) to represent
the situation obtained by consecutively performing α1, · · · , αn starting from S0.

In the SC, a dynamic domain is formalized using an action theory D that in-
cludes the following set of axioms: (1) first-order (FO) action precondition axioms
(APA), one per action, (2) (FO) successor-state axioms (SSA), one per fluent,
that succinctly encode both effect and frame axioms and specify exactly when
the fluent changes, (3) (FO) initial state axioms describing what is true initially,
(4) (FO) unique names axioms for actions, and (5) (SO) domain-independent
foundational axioms describing the structure of situations [11].

Following [15,18], we model knowledge using a possible worlds account adapted
to the SC. There can now be multiple initial situations. Using an accessibility
relation K, the knowledge of an agent d is defined as a necessity operator over
K. K is constrained to be reflexive and Euclidean (and thus transitive) in the
initial situations to capture the fact that the agent’s knowledge is true, and that
it has positive and negative introspection.

In our framework, the dynamics of knowledge is specified using a SSA for
K that supports knowledge expansion as a result of sensing actions as well as
“inform” communication actions. As shown in [18], the constraints on K then
continue to hold after any sequence of actions since they are preserved by the
SSA for K.

Thus to model knowledge, we will use a theory that is similar to D above,
but with modified foundational axioms to allow for multiple initial epistemic
states. Also, action preconditions can now include knowledge preconditions and
initial state axioms can now include axioms describing the epistemic states of
the agents. Finally, the preconditions of inform and aforementioned axioms for
K are included. See [17] and [5] for details of these.

Following Khan and Lespérance (KL) [8], we will utilize the sort of paths
in the SC, which are essentially infinite sequences of executable situations. KL
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[7] showed how one can interpret arbitrary computational tree logic (CTL∗) [4]
formulae within SC with paths. Paths are useful for formalizing future-oriented
concepts such as goals, intentions, and other motivational states. We assume
that our theory D includes the axiomatization for paths.

In [6], KL proposed a formalization of prioritized goals (p-goals), intentions,
and their dynamics in the SC. The account supports a rich specification of the
goals of an agent. In their agent theory, an agent can have multiple goals/desires
at different priority levels, possibly inconsistent with each other. They assume
that goals are totally ordered with respect to the priority ordering. Each goal is
specified using its own goal-accessibility relationG, parameterized by the priority
level. KL defined intentions/chosen goals, i.e. the goals that the agent is actively
pursuing, as the maximal set of highest priority goals that are consistent with
each other and with the agent’s knowledge; semantically, this is handled by tak-
ing a prioritized intersection of goal-accessibility relations. Their model of goals
supports the specification of general temporally extended goals (represented by
CTL∗ formulae), not just achievement goals. They also specified how these goals
evolve when actions/events occur, when the agent’s knowledge changes, or when
the agent adopts or drops a goal. This is specified via the SSA for G. Their for-
malization of prioritized goal dynamics ensures that the agent always optimizes
their intentions. They will abandon a chosen goal ϕ if an opportunity to commit
to a higher priority goal, that is inconsistent with ϕ, arises. As such their model
displays an idealized form of rationality.

We propose to adopt and modify KL’s framework to accommodate multiple
agents, by adding an agent argument to the hierarchy of goal-accessibility rela-
tions. We also modify goal dynamics by introducing a request action req(d, d′, ϕ),
that can be used by an agent d to request another agent d′ to adopt a p-goal ϕ,
simplifying the model to only include extremely cooperative agents that always
adopts the requested goal as their intentions (even if it is inconsistent with their
current intentions; note, the requestee’s intentions do remain consistent). For
this we propose the APA for this req action and update the SSA for G; see [10]
for the formal details.

3. Causation and Explanation

Given a history of actions/events (often called a scenario) and an observed effect,
actual causation involves figuring out which of these actions are responsible for
bringing about this effect. When the effect is assumed to be false before the ex-
ecution of the actions in the scenario and true afterwards, the notion is referred
to as achievement (actual) causation. Based on Batusov and Soutchanski’s orig-
inal proposal [2], KL recently offered a definition of achievement cause in the
SC [9]. Both of these frameworks assume that the scenario is a linear sequence
of actions, i.e. no concurrent actions are allowed. KL’s proposal can deal with
epistemic causes and effects; e.g., an agent may analyze the cause of some newly
acquired knowledge, and the cause may include some knowledge-producing ac-
tion, e.g. inform. They showed that an agent may or may not know all the causes
of an effect, and can even know some causes while not being sure about others.
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In this framework, causes are computed relative to a causal setting consisting
of a domain theory D, a scenario σ (which, again, is a linear sequence of actions),
and an effect φ. Since all changes in the SC result from actions, they identified
the potential causes with a set of ground action terms occurring in σ. However,
since σ might include multiple occurrences of the same action, one also needs
to identify the situations where these actions were executed; for brevity, we
will ignore this component here. The underlying idea of computing causes is as
follows. If some action α of the action sequence in σ triggers the formula φ to
change its truth value from false to true relative to D, and if there are no actions
in σ after α that change the value of φ back to false, then α is an actual cause of
achieving φ in σ. Moreover, note that αmight have been non-executable initially;
so other preceding actions that contributed to ensuring that its preconditions
are brought about must also be considered as (indirect) cause of φ. Similarly,
α might have only brought about φ conditionally, and other preceding actions
that achieved those conditions must be considered as (indirect) cause of φ. Using
this reasoning, in addition to the single action that brings about the effect of
interest, one can also capture the chain of actions that build up to it.

We propose to extend KL’s framework in [9] to include intentions in effect
formulae; see [10] for how this can be done. With this extension, we can now
analyze the causes of an agent having some intention ψ in some scenario. In our
framework, such effects are usually caused by request actions by others.

To propose a model of explanation on top of this framework, we need one last
component, which for this work is considered to be a black-box module. Given
an agent d, an action α, and a scenario s, the component under consideration is a
goal recognition module, which recognizes the intention of d behind performing
α in s. With this, we are now ready to give a definition of explanation. Just
like causes, explanations in our framework are simply actions from the scenario.
However, as we will see, they are not simply causes.

Explanation We say that the behaviour of a group of agents captured by a
scenario s relative to the observation that φ can be explained by the action
a if and only if a is a cause of φ in s; or a causes the intention behind some
explanation of φ in s, i.e. some other action a′ explains φ in s, the agent of a′ is
d′, d′ is recognized to have the intention that ψ behind performing a′ in s, and
a was the cause of this intention in s′.

4. Reasoning Example

We consider a domain where we have two rescue drone agents, D1 and D2, nav-
igating through four locations, Ls, Ld, L1, and L

′
1, and managed by a controller

agent Dc. We have a non-fluent relation, Route(l, l′), that represents a flight
path from location l to l′. The routes are defined as: from Ls to L1, from Ls

to L′
1, from L1 to Ld, and from L′

1 to Ld. In this domain, there are four self-
explanatory actions (given d and l are drones and locations, resp.): takeOff (d, l),
flyTo(d, l, l′), land(d, l), and the aforementioned communicative action inform.
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The fluents in this domain are At(d, l, s), Flying(d, s), Vis(d, l, s) (i.e. d has
visited l in s), and TStorm(l, s) (i.e. there is a thunderstorm at l in s).

The preconditions for the above actions are as follows. Agent d can takeoff
at location l in situation s iff it is at l in s and it is not flying in s. d can fly to
l′ from l in s iff it is at l in s, it is flying in s, there is a route from l to l′, and d
does not know that there is a thunderstorm at l′ in s. d can land at l in s iff it
is at l in s and it is flying in s. Finally, d can inform d′ that Φ in s iff d knows
in s that Φ and it does not know in s that d′ knows that Φ.

The SSA for the above fluents are as follows. d is at location l after executing
action a in situation s iff a refers to d’s action of flying from some location l′

to l, or d was already at l in s and a is not its action of flying to a different
location l′. d is flying in do(a, s) iff a is d’s action of taking off at some location
l, or it was already flying in s and a is not its action of landing at some location.
d has visited l in do(a, s) iff a refers to its action of flying to l from some other
location, or it has already visited l in s. Finally, there is a thunderstorm at l in
do(a, s) iff this is the case in s (for simplicity, we treat this as a non-fluent).

The Knowledge of agents initially are as follows. Drone D1 knows that it is
at location Ls, that it is not flying, and that it has only visited Ls. Moreover,
it does not know that there is a storm at location L1, but knows that there are
no storms at L′

1 and Ld. There is indeed a thunderstorm at location L1 and
the controller agent Dc knows this. Finally, Dc does not know however that the
other agents know this fact.

Assume that, initially our drone agent D1 has the following two p-goals:
ϕ0 = 3At(D1, Ld), i.e. that it is eventually at Ld, at the highest priority level,
and ϕ1 = Vis(D1, L1) B Vis(D1, Ld), i.e. that it visits L1 before it visits Ld, at
a lower priority level, respectively. Also, Dc does not have any initial p-goals.

To see an example of intention dynamics, note that in our example, we can
show that the agent D1 will have the intention that 3Vis(D1, L

′
1) after D1 takes

off from Ls, Dc informs D1 that there is a thunderstorm at L1, and Dc requests
D1 to eventually visit L′

1, starting in the initial situation; thus we can show that
D1 intends to eventually visit L′

1 afterwards. But D1 will not have the intention
that ϕ1 afterwards as it has become impossible for D1 to visit L1 due to its
knowledge of the thunderstorm at L1.

Next, let us consider an example of causation relative to conative effects.
Assume that σ = do([takeOff (D1, Ls), inform(Dc, D1,TStorm(L1)), req(Dc, D1,
3Vis(D1, L

′
1)), inform(Dc, D2,TStorm(L1)), req(Dc, D2,3Vis(D1, L

′
1)),

flyTo(D1, Ls, L
′
1),flyTo(D1, L

′
1, Ld)], S0). There are 7 actions in this scenario.

For convenience, we will use α⃗i to denote the first i actions in this trace, and so
do([α⃗5], S0) is the situation obtained from executing the first 5 actions starting
in S0. Now assume that we want to reason about the causes of the effect φ1 =
Int(D1,3Vis(D1, L

′
1)) in scenario σ1 = do([α⃗5], S0). We can show that Dc’s

request to D1 to eventually visit L′
1 is the only cause of D1’s intention that

3Vis(D1, L
′
1) in σ1. Thus, e.g., req(Dc, D2,3Vis(D1, L

′
1)) is not a cause.

Finally, we would like to explain the behaviour of drones as modeled by situa-
tion/scenario σ above relative to the effect that φ2 = Vis(D1, L

′
1), i.e. we want to
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understand why D1 visited L′
1 (rather than the usual path of L1). As expected,

we can show that agent behaviour in σ w.r.t. visiting L′
1 can be explained by

D1’s action flyTo(D1, Ls, L
′
1). But perhaps more interestingly, assuming that

the intention behind D1’s action of flyTo(D1, Ls, L
′
1) in σ was recognized to be

3Vis(D1, L
′
1), we can further explain agent behaviour via the causes of having

this intention. This will in turn reveal that D1 had this intention due to Dc’s
request to D1 to eventually visit L′

1, and thus agent behaviour w.r.t. D1 visiting
L′
1 can be explained by this request action as well.

5. Discussion and Conclusion

In this paper, we sketched an account of causal reasoning about motivations.
Using this, we offered a novel take on explainable AI that is grounded in theory of
mind: agent behaviour in our framework can be explained via the causal analysis
of observed effects, which in turn can trigger the analysis of their mental states.

As mentioned, there has been some work on formalizing explanation in KR.
For instance, in his early work, Shanahan [19] proposed a deductive and an
abductive approach to explanation in the situation calculus, both of which are
based on default reasoning. More recently, Shvo et al. [20] proposed a belief
revision-based account of explanation. In their framework, a formula ϕ explains
another formula ψ if revising by ϕ makes the agent believe ψ and the agent’s
beliefs are still consistent afterwards. In [3], Dennis and Oren used dialogue be-
tween the user and a Belief-Desire-Intention (BDI) agent system to explain why
the agent has chosen a particular action. Their approach aims to identify any di-
vergence of views that exist between the user and the BDI agent relative to the
latter’s behaviour and allows for an interactive and user-friendly explanation
process. Miller [14] proposed a contrastive explanation model based on struc-
tural causal models to enhance understanding and trust in AI decision-making.
Finally, Sridharan et al. [21,22] proposed an explainable robotic architecture by
integrating step-wise refinement, non-monotonic reasoning, probabilistic plan-
ning, and interactive learning. However, none of these proposals perform causal
analysis of agent motivation or employ such reasoning for explaining agent be-
haviour. In fact to the best of our knowledge, our proposal is the first and the
only attempt to this end.

Our current formalization is limited in many ways. For instance, we only
allow deterministic and fully observable actions. Scenarios in our framework
are linear, i.e. we assume that the order of action occurrence is known. When
dealing with causation and explanations, we computed achievement causes only.
Incorporating other types of causes, e.g. maintenance causes [1], would have
allowed us to explain effects further and in finer details. We leave these for
future work.
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